MakeItFrom.com
Menu (ESC)

7204 Aluminum vs. Nickel 80A

7204 aluminum belongs to the aluminum alloys classification, while nickel 80A belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7204 aluminum and the bottom bar is nickel 80A.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 11 to 13
22
Fatigue Strength, MPa 110 to 130
430
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 130 to 220
660
Tensile Strength: Ultimate (UTS), MPa 220 to 380
1040
Tensile Strength: Yield (Proof), MPa 120 to 310
710

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 210
980
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 520
1310
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.9
8.3
Embodied Carbon, kg CO2/kg material 8.4
9.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1140
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 40
210
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 710
1300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 21 to 36
35
Strength to Weight: Bending, points 28 to 40
27
Thermal Diffusivity, mm2/s 58
2.9
Thermal Shock Resistance, points 9.4 to 16
31

Alloy Composition

Aluminum (Al), % 90.5 to 94.8
0.5 to 1.8
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.3
18 to 21
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.35
0 to 3.0
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0.2 to 0.7
0 to 1.0
Nickel (Ni), % 0
69.4 to 79.7
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
1.8 to 2.7
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0