MakeItFrom.com
Menu (ESC)

7204 Aluminum vs. C47000 Brass

7204 aluminum belongs to the aluminum alloys classification, while C47000 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7204 aluminum and the bottom bar is C47000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
100
Elongation at Break, % 11 to 13
36
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 220 to 380
380
Tensile Strength: Yield (Proof), MPa 120 to 310
150

Thermal Properties

Latent Heat of Fusion, J/g 380
170
Maximum Temperature: Mechanical, °C 210
120
Melting Completion (Liquidus), °C 640
900
Melting Onset (Solidus), °C 520
890
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 24
21

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 8.4
2.7
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1140
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 40
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 710
100
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 47
20
Strength to Weight: Axial, points 21 to 36
13
Strength to Weight: Bending, points 28 to 40
15
Thermal Diffusivity, mm2/s 58
38
Thermal Shock Resistance, points 9.4 to 16
13

Alloy Composition

Aluminum (Al), % 90.5 to 94.8
0 to 0.010
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.2
57 to 61
Iron (Fe), % 0 to 0.35
0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0.2 to 0.7
0
Silicon (Si), % 0 to 0.3
0
Tin (Sn), % 0
0.25 to 1.0
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 4.0 to 5.0
37.5 to 42.8
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0
0 to 0.4