MakeItFrom.com
Menu (ESC)

7204 Aluminum vs. C94700 Bronze

7204 aluminum belongs to the aluminum alloys classification, while C94700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7204 aluminum and the bottom bar is C94700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 11 to 13
7.9 to 32
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 220 to 380
350 to 590
Tensile Strength: Yield (Proof), MPa 120 to 310
160 to 400

Thermal Properties

Latent Heat of Fusion, J/g 380
200
Maximum Temperature: Mechanical, °C 210
190
Melting Completion (Liquidus), °C 640
1030
Melting Onset (Solidus), °C 520
900
Specific Heat Capacity, J/kg-K 880
380
Thermal Conductivity, W/m-K 150
54
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
12
Electrical Conductivity: Equal Weight (Specific), % IACS 120
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.9
8.8
Embodied Carbon, kg CO2/kg material 8.4
3.5
Embodied Energy, MJ/kg 150
56
Embodied Water, L/kg 1140
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 40
41 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 710
110 to 700
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 47
18
Strength to Weight: Axial, points 21 to 36
11 to 19
Strength to Weight: Bending, points 28 to 40
13 to 18
Thermal Diffusivity, mm2/s 58
16
Thermal Shock Resistance, points 9.4 to 16
12 to 21

Alloy Composition

Aluminum (Al), % 90.5 to 94.8
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.2
85 to 90
Iron (Fe), % 0 to 0.35
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0.2 to 0.7
0 to 0.2
Nickel (Ni), % 0
4.5 to 6.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.3
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
4.5 to 6.0
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 4.0 to 5.0
1.0 to 2.5
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0
0 to 1.3