MakeItFrom.com
Menu (ESC)

7204 Aluminum vs. N12160 Nickel

7204 aluminum belongs to the aluminum alloys classification, while N12160 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7204 aluminum and the bottom bar is N12160 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 11 to 13
45
Fatigue Strength, MPa 110 to 130
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Shear Strength, MPa 130 to 220
500
Tensile Strength: Ultimate (UTS), MPa 220 to 380
710
Tensile Strength: Yield (Proof), MPa 120 to 310
270

Thermal Properties

Latent Heat of Fusion, J/g 380
360
Maximum Temperature: Mechanical, °C 210
1060
Melting Completion (Liquidus), °C 640
1330
Melting Onset (Solidus), °C 520
1280
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
90
Density, g/cm3 2.9
8.2
Embodied Carbon, kg CO2/kg material 8.4
8.5
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1140
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 40
260
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 710
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 21 to 36
24
Strength to Weight: Bending, points 28 to 40
22
Thermal Diffusivity, mm2/s 58
2.8
Thermal Shock Resistance, points 9.4 to 16
19

Alloy Composition

Aluminum (Al), % 90.5 to 94.8
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.3
26 to 30
Cobalt (Co), % 0
27 to 33
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.35
0 to 3.5
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0.2 to 0.7
0 to 1.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
25 to 44.4
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
2.4 to 3.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0.2 to 0.8
Tungsten (W), % 0
0 to 1.0
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0