MakeItFrom.com
Menu (ESC)

7204 Aluminum vs. S21460 Stainless Steel

7204 aluminum belongs to the aluminum alloys classification, while S21460 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7204 aluminum and the bottom bar is S21460 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 11 to 13
46
Fatigue Strength, MPa 110 to 130
390
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 130 to 220
580
Tensile Strength: Ultimate (UTS), MPa 220 to 380
830
Tensile Strength: Yield (Proof), MPa 120 to 310
430

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 210
920
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 520
1330
Specific Heat Capacity, J/kg-K 880
480
Thermal Expansion, µm/m-K 24
18

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.9
7.6
Embodied Carbon, kg CO2/kg material 8.4
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1140
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 40
320
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 710
460
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 21 to 36
30
Strength to Weight: Bending, points 28 to 40
26
Thermal Shock Resistance, points 9.4 to 16
17

Alloy Composition

Aluminum (Al), % 90.5 to 94.8
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.3
17 to 19
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.35
57.3 to 63.7
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0.2 to 0.7
14 to 16
Nickel (Ni), % 0
5.0 to 6.0
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0