MakeItFrom.com
Menu (ESC)

7204 Aluminum vs. S31266 Stainless Steel

7204 aluminum belongs to the aluminum alloys classification, while S31266 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7204 aluminum and the bottom bar is S31266 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 11 to 13
40
Fatigue Strength, MPa 110 to 130
400
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 130 to 220
590
Tensile Strength: Ultimate (UTS), MPa 220 to 380
860
Tensile Strength: Yield (Proof), MPa 120 to 310
470

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 520
1420
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.9
8.2
Embodied Carbon, kg CO2/kg material 8.4
6.5
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1140
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 40
290
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 710
540
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 21 to 36
29
Strength to Weight: Bending, points 28 to 40
24
Thermal Diffusivity, mm2/s 58
3.1
Thermal Shock Resistance, points 9.4 to 16
18

Alloy Composition

Aluminum (Al), % 90.5 to 94.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.3
23 to 25
Copper (Cu), % 0 to 0.2
1.0 to 2.5
Iron (Fe), % 0 to 0.35
34.1 to 46
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0.2 to 0.7
2.0 to 4.0
Molybdenum (Mo), % 0
5.2 to 6.2
Nickel (Ni), % 0
21 to 24
Nitrogen (N), % 0
0.35 to 0.6
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0