MakeItFrom.com
Menu (ESC)

7475 Aluminum vs. ASTM A369 Grade FP12

7475 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP12 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7475 aluminum and the bottom bar is ASTM A369 grade FP12.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 10 to 12
20
Fatigue Strength, MPa 190 to 210
170
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 320 to 350
300
Tensile Strength: Ultimate (UTS), MPa 530 to 590
470
Tensile Strength: Yield (Proof), MPa 440 to 520
250

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 180
430
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 480
1430
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140 to 160
45
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 42
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 98 to 120
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.8
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.2
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1130
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 53 to 68
81
Resilience: Unit (Modulus of Resilience), kJ/m3 1390 to 1920
160
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 49 to 55
17
Strength to Weight: Bending, points 48 to 52
17
Thermal Diffusivity, mm2/s 53 to 63
12
Thermal Shock Resistance, points 23 to 26
14

Alloy Composition

Aluminum (Al), % 88.6 to 91.6
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0.18 to 0.25
0.8 to 1.3
Copper (Cu), % 1.2 to 1.9
0
Iron (Fe), % 0 to 0.12
96.8 to 98.4
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.060
0.3 to 0.61
Molybdenum (Mo), % 0
0.44 to 0.65
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.1 to 6.2
0
Residuals, % 0 to 0.15
0