MakeItFrom.com
Menu (ESC)

7475 Aluminum vs. EN 1.0225 Steel

7475 aluminum belongs to the aluminum alloys classification, while EN 1.0225 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7475 aluminum and the bottom bar is EN 1.0225 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 10 to 12
6.7 to 24
Fatigue Strength, MPa 190 to 210
170 to 220
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 320 to 350
280 to 290
Tensile Strength: Ultimate (UTS), MPa 530 to 590
440 to 500
Tensile Strength: Yield (Proof), MPa 440 to 520
230 to 380

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 480
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140 to 160
52
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 42
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 98 to 120
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.8
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1130
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 53 to 68
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 1390 to 1920
140 to 390
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 49 to 55
16 to 18
Strength to Weight: Bending, points 48 to 52
16 to 18
Thermal Diffusivity, mm2/s 53 to 63
14
Thermal Shock Resistance, points 23 to 26
14 to 16

Alloy Composition

Aluminum (Al), % 88.6 to 91.6
0
Carbon (C), % 0
0 to 0.21
Chromium (Cr), % 0.18 to 0.25
0
Copper (Cu), % 1.2 to 1.9
0
Iron (Fe), % 0 to 0.12
98 to 100
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.060
0 to 1.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 0.35
Sulfur (S), % 0
0 to 0.045
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.1 to 6.2
0
Residuals, % 0 to 0.15
0