MakeItFrom.com
Menu (ESC)

7475 Aluminum vs. EN 1.4980 Stainless Steel

7475 aluminum belongs to the aluminum alloys classification, while EN 1.4980 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7475 aluminum and the bottom bar is EN 1.4980 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 10 to 12
17
Fatigue Strength, MPa 190 to 210
410
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
75
Shear Strength, MPa 320 to 350
630
Tensile Strength: Ultimate (UTS), MPa 530 to 590
1030
Tensile Strength: Yield (Proof), MPa 440 to 520
680

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 180
920
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 480
1380
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140 to 160
13
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 42
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 98 to 120
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
26
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.2
6.0
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1130
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 53 to 68
150
Resilience: Unit (Modulus of Resilience), kJ/m3 1390 to 1920
1180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 49 to 55
36
Strength to Weight: Bending, points 48 to 52
28
Thermal Diffusivity, mm2/s 53 to 63
3.5
Thermal Shock Resistance, points 23 to 26
22

Alloy Composition

Aluminum (Al), % 88.6 to 91.6
0 to 0.35
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0.18 to 0.25
13.5 to 16
Copper (Cu), % 1.2 to 1.9
0
Iron (Fe), % 0 to 0.12
49.2 to 58.5
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.060
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0
24 to 27
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.060
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 5.1 to 6.2
0
Residuals, % 0 to 0.15
0