MakeItFrom.com
Menu (ESC)

7475 Aluminum vs. EN 1.5414 Steel

7475 aluminum belongs to the aluminum alloys classification, while EN 1.5414 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7475 aluminum and the bottom bar is EN 1.5414 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 10 to 12
22
Fatigue Strength, MPa 190 to 210
250 to 270
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 320 to 350
350 to 370
Tensile Strength: Ultimate (UTS), MPa 530 to 590
550 to 580
Tensile Strength: Yield (Proof), MPa 440 to 520
350 to 380

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 180
410
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 480
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140 to 160
44
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 42
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 98 to 120
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.6
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.2
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1130
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 53 to 68
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1390 to 1920
320 to 370
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 49 to 55
19 to 20
Strength to Weight: Bending, points 48 to 52
19 to 20
Thermal Diffusivity, mm2/s 53 to 63
12
Thermal Shock Resistance, points 23 to 26
16 to 17

Alloy Composition

Aluminum (Al), % 88.6 to 91.6
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0.18 to 0.25
0 to 0.3
Copper (Cu), % 1.2 to 1.9
0 to 0.3
Iron (Fe), % 0 to 0.12
96.4 to 98.7
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.060
0.9 to 1.5
Molybdenum (Mo), % 0
0.45 to 0.6
Nickel (Ni), % 0
0 to 0.3
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.1
0 to 0.4
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.1 to 6.2
0
Residuals, % 0 to 0.15
0