MakeItFrom.com
Menu (ESC)

7475 Aluminum vs. SAE-AISI A9 Steel

7475 aluminum belongs to the aluminum alloys classification, while SAE-AISI A9 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7475 aluminum and the bottom bar is SAE-AISI A9 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 530 to 590
770 to 2030

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 480
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140 to 160
35
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 42
7.9
Electrical Conductivity: Equal Weight (Specific), % IACS 98 to 120
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
4.7
Embodied Energy, MJ/kg 150
70
Embodied Water, L/kg 1130
82

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 49 to 55
28 to 73
Strength to Weight: Bending, points 48 to 52
24 to 46
Thermal Diffusivity, mm2/s 53 to 63
9.6
Thermal Shock Resistance, points 23 to 26
25 to 66

Alloy Composition

Aluminum (Al), % 88.6 to 91.6
0
Carbon (C), % 0
0.45 to 0.55
Chromium (Cr), % 0.18 to 0.25
4.8 to 5.5
Copper (Cu), % 1.2 to 1.9
0 to 0.25
Iron (Fe), % 0 to 0.12
87 to 90.5
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.060
0 to 0.5
Molybdenum (Mo), % 0
1.3 to 1.8
Nickel (Ni), % 0
1.3 to 1.8
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
1.0 to 1.2
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.060
0
Vanadium (V), % 0
0.8 to 1.4
Zinc (Zn), % 5.1 to 6.2
0
Residuals, % 0 to 0.15
0