MakeItFrom.com
Menu (ESC)

7475 Aluminum vs. C28500 Muntz Metal

7475 aluminum belongs to the aluminum alloys classification, while C28500 Muntz Metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7475 aluminum and the bottom bar is C28500 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
100
Elongation at Break, % 10 to 12
20
Poisson's Ratio 0.32
0.3
Shear Modulus, GPa 26
40
Shear Strength, MPa 320 to 350
320
Tensile Strength: Ultimate (UTS), MPa 530 to 590
520
Tensile Strength: Yield (Proof), MPa 440 to 520
380

Thermal Properties

Latent Heat of Fusion, J/g 380
170
Maximum Temperature: Mechanical, °C 180
110
Melting Completion (Liquidus), °C 640
900
Melting Onset (Solidus), °C 480
890
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 140 to 160
100
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 42
29
Electrical Conductivity: Equal Weight (Specific), % IACS 98 to 120
33

Otherwise Unclassified Properties

Base Metal Price, % relative 10
22
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 53 to 68
94
Resilience: Unit (Modulus of Resilience), kJ/m3 1390 to 1920
700
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 46
20
Strength to Weight: Axial, points 49 to 55
18
Strength to Weight: Bending, points 48 to 52
18
Thermal Diffusivity, mm2/s 53 to 63
33
Thermal Shock Resistance, points 23 to 26
17

Alloy Composition

Aluminum (Al), % 88.6 to 91.6
0
Chromium (Cr), % 0.18 to 0.25
0
Copper (Cu), % 1.2 to 1.9
57 to 59
Iron (Fe), % 0 to 0.12
0 to 0.35
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.060
0
Silicon (Si), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.1 to 6.2
39.5 to 43
Residuals, % 0
0 to 0.9