MakeItFrom.com
Menu (ESC)

7475 Aluminum vs. C72500 Copper-nickel

7475 aluminum belongs to the aluminum alloys classification, while C72500 copper-nickel belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7475 aluminum and the bottom bar is C72500 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 26
45
Tensile Strength: Ultimate (UTS), MPa 530 to 590
420 to 780

Thermal Properties

Latent Heat of Fusion, J/g 380
210
Maximum Temperature: Mechanical, °C 180
210
Melting Completion (Liquidus), °C 640
1130
Melting Onset (Solidus), °C 480
1060
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 140 to 160
54
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 42
11
Electrical Conductivity: Equal Weight (Specific), % IACS 98 to 120
11

Otherwise Unclassified Properties

Base Metal Price, % relative 10
35
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.2
3.6
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1130
320

Common Calculations

Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 49 to 55
13 to 24
Strength to Weight: Bending, points 48 to 52
14 to 21
Thermal Diffusivity, mm2/s 53 to 63
16
Thermal Shock Resistance, points 23 to 26
14 to 27

Alloy Composition

Aluminum (Al), % 88.6 to 91.6
0
Chromium (Cr), % 0.18 to 0.25
0
Copper (Cu), % 1.2 to 1.9
85.2 to 89.7
Iron (Fe), % 0 to 0.12
0 to 0.6
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.060
0 to 0.2
Nickel (Ni), % 0
8.5 to 10.5
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0
1.8 to 2.8
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.1 to 6.2
0 to 0.5
Residuals, % 0
0 to 0.2