MakeItFrom.com
Menu (ESC)

7475 Aluminum vs. C79600 Nickel Silver

7475 aluminum belongs to the aluminum alloys classification, while C79600 nickel silver belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7475 aluminum and the bottom bar is C79600 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 10 to 12
15
Poisson's Ratio 0.32
0.3
Shear Modulus, GPa 26
43
Shear Strength, MPa 320 to 350
290
Tensile Strength: Ultimate (UTS), MPa 530 to 590
480
Tensile Strength: Yield (Proof), MPa 440 to 520
300

Thermal Properties

Latent Heat of Fusion, J/g 380
180
Maximum Temperature: Mechanical, °C 180
130
Melting Completion (Liquidus), °C 640
930
Melting Onset (Solidus), °C 480
880
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 140 to 160
36
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 42
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 98 to 120
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
25
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.2
3.5
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 53 to 68
63
Resilience: Unit (Modulus of Resilience), kJ/m3 1390 to 1920
400
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 46
20
Strength to Weight: Axial, points 49 to 55
17
Strength to Weight: Bending, points 48 to 52
17
Thermal Diffusivity, mm2/s 53 to 63
12
Thermal Shock Resistance, points 23 to 26
15

Alloy Composition

Aluminum (Al), % 88.6 to 91.6
0
Chromium (Cr), % 0.18 to 0.25
0
Copper (Cu), % 1.2 to 1.9
43.5 to 46.5
Iron (Fe), % 0 to 0.12
0
Lead (Pb), % 0
0.8 to 1.2
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.060
1.5 to 2.5
Nickel (Ni), % 0
9.0 to 11
Silicon (Si), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.1 to 6.2
38.3 to 45.2
Residuals, % 0
0 to 0.5