MakeItFrom.com
Menu (ESC)

7475 Aluminum vs. S30435 Stainless Steel

7475 aluminum belongs to the aluminum alloys classification, while S30435 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7475 aluminum and the bottom bar is S30435 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 10 to 12
51
Fatigue Strength, MPa 190 to 210
170
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 320 to 350
370
Tensile Strength: Ultimate (UTS), MPa 530 to 590
510
Tensile Strength: Yield (Proof), MPa 440 to 520
170

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 180
900
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 480
1380
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 140 to 160
16
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 42
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 98 to 120
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 10
14
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
2.9
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1130
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 53 to 68
210
Resilience: Unit (Modulus of Resilience), kJ/m3 1390 to 1920
77
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 49 to 55
18
Strength to Weight: Bending, points 48 to 52
18
Thermal Diffusivity, mm2/s 53 to 63
4.2
Thermal Shock Resistance, points 23 to 26
12

Alloy Composition

Aluminum (Al), % 88.6 to 91.6
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.18 to 0.25
16 to 18
Copper (Cu), % 1.2 to 1.9
1.5 to 3.0
Iron (Fe), % 0 to 0.12
66.9 to 75.5
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.060
0 to 2.0
Nickel (Ni), % 0
7.0 to 9.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.1 to 6.2
0
Residuals, % 0 to 0.15
0