MakeItFrom.com
Menu (ESC)

7475 Aluminum vs. S31266 Stainless Steel

7475 aluminum belongs to the aluminum alloys classification, while S31266 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7475 aluminum and the bottom bar is S31266 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 10 to 12
40
Fatigue Strength, MPa 190 to 210
400
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 320 to 350
590
Tensile Strength: Ultimate (UTS), MPa 530 to 590
860
Tensile Strength: Yield (Proof), MPa 440 to 520
470

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 480
1420
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 140 to 160
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 42
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 98 to 120
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
37
Density, g/cm3 3.0
8.2
Embodied Carbon, kg CO2/kg material 8.2
6.5
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1130
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 53 to 68
290
Resilience: Unit (Modulus of Resilience), kJ/m3 1390 to 1920
540
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 49 to 55
29
Strength to Weight: Bending, points 48 to 52
24
Thermal Diffusivity, mm2/s 53 to 63
3.1
Thermal Shock Resistance, points 23 to 26
18

Alloy Composition

Aluminum (Al), % 88.6 to 91.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.18 to 0.25
23 to 25
Copper (Cu), % 1.2 to 1.9
1.0 to 2.5
Iron (Fe), % 0 to 0.12
34.1 to 46
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.060
2.0 to 4.0
Molybdenum (Mo), % 0
5.2 to 6.2
Nickel (Ni), % 0
21 to 24
Nitrogen (N), % 0
0.35 to 0.6
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.060
0
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 5.1 to 6.2
0
Residuals, % 0 to 0.15
0