MakeItFrom.com
Menu (ESC)

7475 Aluminum vs. S66286 Stainless Steel

7475 aluminum belongs to the aluminum alloys classification, while S66286 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7475 aluminum and the bottom bar is S66286 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 10 to 12
17 to 40
Fatigue Strength, MPa 190 to 210
240 to 410
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
75
Shear Strength, MPa 320 to 350
420 to 630
Tensile Strength: Ultimate (UTS), MPa 530 to 590
620 to 1020
Tensile Strength: Yield (Proof), MPa 440 to 520
280 to 670

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 180
920
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 480
1370
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140 to 160
15
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33 to 42
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 98 to 120
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
26
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.2
6.0
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1130
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 53 to 68
150 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 1390 to 1920
190 to 1150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 49 to 55
22 to 36
Strength to Weight: Bending, points 48 to 52
20 to 28
Thermal Diffusivity, mm2/s 53 to 63
4.0
Thermal Shock Resistance, points 23 to 26
13 to 22

Alloy Composition

Aluminum (Al), % 88.6 to 91.6
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.18 to 0.25
13.5 to 16
Copper (Cu), % 1.2 to 1.9
0
Iron (Fe), % 0 to 0.12
49.1 to 59.5
Magnesium (Mg), % 1.9 to 2.6
0
Manganese (Mn), % 0 to 0.060
0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0
24 to 27
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.060
1.9 to 2.4
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 5.1 to 6.2
0
Residuals, % 0 to 0.15
0