MakeItFrom.com
Menu (ESC)

8011A Aluminum vs. AISI 301LN Stainless Steel

8011A aluminum belongs to the aluminum alloys classification, while AISI 301LN stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8011A aluminum and the bottom bar is AISI 301LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 25 to 50
210 to 320
Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 1.7 to 28
23 to 51
Fatigue Strength, MPa 33 to 76
270 to 520
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 100 to 180
630 to 1060
Tensile Strength: Yield (Proof), MPa 34 to 170
270 to 770

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 170
890
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 630
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 210
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
13
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1180
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.0 to 22
220 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 8.2 to 200
180 to 1520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11 to 18
22 to 38
Strength to Weight: Bending, points 18 to 26
21 to 30
Thermal Diffusivity, mm2/s 86
4.0
Thermal Shock Resistance, points 4.6 to 8.1
14 to 24

Alloy Composition

Aluminum (Al), % 97.5 to 99.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
16 to 18
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0.5 to 1.0
70.7 to 77.9
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.070 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.4 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0

Comparable Variants