MakeItFrom.com
Menu (ESC)

8011A Aluminum vs. ASTM A372 Grade M Steel

8011A aluminum belongs to the aluminum alloys classification, while ASTM A372 grade M steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8011A aluminum and the bottom bar is ASTM A372 grade M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 25 to 50
240 to 280
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 1.7 to 28
18 to 21
Fatigue Strength, MPa 33 to 76
450 to 520
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 100 to 180
810 to 910
Tensile Strength: Yield (Proof), MPa 34 to 170
660 to 770

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
450
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 630
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 210
46
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 180
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
5.0
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.2
2.0
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1180
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.0 to 22
160
Resilience: Unit (Modulus of Resilience), kJ/m3 8.2 to 200
1140 to 1580
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 11 to 18
29 to 32
Strength to Weight: Bending, points 18 to 26
24 to 27
Thermal Diffusivity, mm2/s 86
12
Thermal Shock Resistance, points 4.6 to 8.1
24 to 27

Alloy Composition

Aluminum (Al), % 97.5 to 99.1
0
Carbon (C), % 0
0 to 0.23
Chromium (Cr), % 0 to 0.1
1.5 to 2.0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0.5 to 1.0
92.5 to 95.1
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0.2 to 0.4
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0
2.8 to 3.9
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.4 to 0.8
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0

Comparable Variants