MakeItFrom.com
Menu (ESC)

8011A Aluminum vs. AWS ER80S-Ni2

8011A aluminum belongs to the aluminum alloys classification, while AWS ER80S-Ni2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8011A aluminum and the bottom bar is AWS ER80S-Ni2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 1.7 to 28
27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 100 to 180
620
Tensile Strength: Yield (Proof), MPa 34 to 170
540

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 630
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 210
52
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 180
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
3.4
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.6
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1180
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.0 to 22
160
Resilience: Unit (Modulus of Resilience), kJ/m3 8.2 to 200
770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 11 to 18
22
Strength to Weight: Bending, points 18 to 26
21
Thermal Diffusivity, mm2/s 86
14
Thermal Shock Resistance, points 4.6 to 8.1
18

Alloy Composition

Aluminum (Al), % 97.5 to 99.1
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
0 to 0.35
Iron (Fe), % 0.5 to 1.0
94.2 to 97.6
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0 to 1.3
Nickel (Ni), % 0
2.0 to 2.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.4 to 0.8
0.4 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5