MakeItFrom.com
Menu (ESC)

8011A Aluminum vs. EN 1.5636 Steel

8011A aluminum belongs to the aluminum alloys classification, while EN 1.5636 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8011A aluminum and the bottom bar is EN 1.5636 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 25 to 50
170
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 1.7 to 28
27
Fatigue Strength, MPa 33 to 76
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 100 to 180
560
Tensile Strength: Yield (Proof), MPa 34 to 170
310

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 630
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 210
52
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 180
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
3.6
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.2
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1180
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.0 to 22
130
Resilience: Unit (Modulus of Resilience), kJ/m3 8.2 to 200
260
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 11 to 18
20
Strength to Weight: Bending, points 18 to 26
19
Thermal Diffusivity, mm2/s 86
14
Thermal Shock Resistance, points 4.6 to 8.1
16

Alloy Composition

Aluminum (Al), % 97.5 to 99.1
0
Carbon (C), % 0
0.060 to 0.12
Chromium (Cr), % 0 to 0.1
0 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0.5 to 1.0
94.6 to 97.4
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
2.0 to 3.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.4 to 0.8
0 to 0.6
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0