MakeItFrom.com
Menu (ESC)

8011A Aluminum vs. EN 1.7362 Steel

8011A aluminum belongs to the aluminum alloys classification, while EN 1.7362 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8011A aluminum and the bottom bar is EN 1.7362 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 25 to 50
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 1.7 to 28
21 to 22
Fatigue Strength, MPa 33 to 76
140 to 250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 100 to 180
510 to 600
Tensile Strength: Yield (Proof), MPa 34 to 170
200 to 360

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 170
510
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 630
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 210
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 180
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
4.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.8
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1180
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.0 to 22
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 8.2 to 200
100 to 340
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11 to 18
18 to 21
Strength to Weight: Bending, points 18 to 26
18 to 20
Thermal Diffusivity, mm2/s 86
11
Thermal Shock Resistance, points 4.6 to 8.1
14 to 17

Alloy Composition

Aluminum (Al), % 97.5 to 99.1
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0 to 0.1
4.0 to 6.0
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0.5 to 1.0
91.5 to 95.2
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.3
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.4 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0

Comparable Variants