MakeItFrom.com
Menu (ESC)

8011A Aluminum vs. EN 1.7729 Steel

8011A aluminum belongs to the aluminum alloys classification, while EN 1.7729 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8011A aluminum and the bottom bar is EN 1.7729 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 25 to 50
270
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 1.7 to 28
17
Fatigue Strength, MPa 33 to 76
500
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 100 to 180
910
Tensile Strength: Yield (Proof), MPa 34 to 170
750

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 630
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 210
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 180
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
3.8
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.2
3.3
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1180
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.0 to 22
150
Resilience: Unit (Modulus of Resilience), kJ/m3 8.2 to 200
1500
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 11 to 18
32
Strength to Weight: Bending, points 18 to 26
27
Thermal Diffusivity, mm2/s 86
11
Thermal Shock Resistance, points 4.6 to 8.1
27

Alloy Composition

Aluminum (Al), % 97.5 to 99.1
0.015 to 0.080
Arsenic (As), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0 to 0.1
0.9 to 1.2
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0.5 to 1.0
94.8 to 97
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0.35 to 0.75
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.4 to 0.8
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.050
0.070 to 0.15
Vanadium (V), % 0
0.6 to 0.8
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0