MakeItFrom.com
Menu (ESC)

8011A Aluminum vs. EN AC-45100 Aluminum

Both 8011A aluminum and EN AC-45100 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common.

For each property being compared, the top bar is 8011A aluminum and the bottom bar is EN AC-45100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 25 to 50
97 to 130
Elastic (Young's, Tensile) Modulus, GPa 69
72
Elongation at Break, % 1.7 to 28
1.0 to 2.8
Fatigue Strength, MPa 33 to 76
82 to 99
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 100 to 180
300 to 360
Tensile Strength: Yield (Proof), MPa 34 to 170
210 to 320

Thermal Properties

Latent Heat of Fusion, J/g 400
470
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
630
Melting Onset (Solidus), °C 630
550
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 210
140
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
30
Electrical Conductivity: Equal Weight (Specific), % IACS 180
95

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
10
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.2
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.0 to 22
3.5 to 7.6
Resilience: Unit (Modulus of Resilience), kJ/m3 8.2 to 200
290 to 710
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
49
Strength to Weight: Axial, points 11 to 18
30 to 35
Strength to Weight: Bending, points 18 to 26
35 to 39
Thermal Diffusivity, mm2/s 86
54
Thermal Shock Resistance, points 4.6 to 8.1
14 to 16

Alloy Composition

Aluminum (Al), % 97.5 to 99.1
88 to 92.8
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
2.6 to 3.6
Iron (Fe), % 0.5 to 1.0
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0 to 0.1
0.15 to 0.45
Manganese (Mn), % 0 to 0.1
0 to 0.55
Nickel (Ni), % 0
0 to 0.1
Silicon (Si), % 0.4 to 0.8
4.5 to 6.0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.050
0 to 0.25
Zinc (Zn), % 0 to 0.1
0 to 0.2
Residuals, % 0
0 to 0.15