MakeItFrom.com
Menu (ESC)

8011A Aluminum vs. SAE-AISI 1151 Steel

8011A aluminum belongs to the aluminum alloys classification, while SAE-AISI 1151 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8011A aluminum and the bottom bar is SAE-AISI 1151 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 25 to 50
210 to 220
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 1.7 to 28
11 to 17
Fatigue Strength, MPa 33 to 76
260 to 410
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 100 to 180
710 to 800
Tensile Strength: Yield (Proof), MPa 34 to 170
390 to 660

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 630
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 210
51
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
10
Electrical Conductivity: Equal Weight (Specific), % IACS 180
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
1.8
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1180
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.0 to 22
86 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 8.2 to 200
400 to 1170
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 11 to 18
25 to 28
Strength to Weight: Bending, points 18 to 26
22 to 24
Thermal Diffusivity, mm2/s 86
14
Thermal Shock Resistance, points 4.6 to 8.1
22 to 25

Alloy Composition

Aluminum (Al), % 97.5 to 99.1
0
Carbon (C), % 0
0.48 to 0.55
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0.5 to 1.0
98.3 to 98.7
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0.7 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
0
Sulfur (S), % 0
0.080 to 0.13
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0