MakeItFrom.com
Menu (ESC)

8011A Aluminum vs. SAE-AISI 4340M Steel

8011A aluminum belongs to the aluminum alloys classification, while SAE-AISI 4340M steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8011A aluminum and the bottom bar is SAE-AISI 4340M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 25 to 50
710
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 1.7 to 28
6.0
Fatigue Strength, MPa 33 to 76
690
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 100 to 180
2340
Tensile Strength: Yield (Proof), MPa 34 to 170
1240

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 630
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 210
38
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 180
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
3.9
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.9
Embodied Energy, MJ/kg 150
26
Embodied Water, L/kg 1180
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.0 to 22
120
Resilience: Unit (Modulus of Resilience), kJ/m3 8.2 to 200
4120
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11 to 18
84
Strength to Weight: Bending, points 18 to 26
51
Thermal Diffusivity, mm2/s 86
10
Thermal Shock Resistance, points 4.6 to 8.1
70

Alloy Composition

Aluminum (Al), % 97.5 to 99.1
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0 to 0.1
0.7 to 1.0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0.5 to 1.0
93.3 to 94.8
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0.65 to 0.9
Molybdenum (Mo), % 0
0.35 to 0.45
Nickel (Ni), % 0
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.012
Silicon (Si), % 0.4 to 0.8
1.5 to 1.8
Sulfur (S), % 0
0 to 0.012
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0
0.050 to 0.1
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0