MakeItFrom.com
Menu (ESC)

8011A Aluminum vs. C47940 Brass

8011A aluminum belongs to the aluminum alloys classification, while C47940 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8011A aluminum and the bottom bar is C47940 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
100
Elongation at Break, % 1.7 to 28
14 to 34
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 100 to 180
380 to 520
Tensile Strength: Yield (Proof), MPa 34 to 170
160 to 390

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 170
130
Melting Completion (Liquidus), °C 650
850
Melting Onset (Solidus), °C 630
800
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 210
110
Thermal Expansion, µm/m-K 23
20

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
25
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.2
2.8
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.0 to 22
68 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 8.2 to 200
120 to 740
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 11 to 18
13 to 17
Strength to Weight: Bending, points 18 to 26
14 to 17
Thermal Diffusivity, mm2/s 86
36
Thermal Shock Resistance, points 4.6 to 8.1
13 to 17

Alloy Composition

Aluminum (Al), % 97.5 to 99.1
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
63 to 66
Iron (Fe), % 0.5 to 1.0
0.1 to 1.0
Lead (Pb), % 0
1.0 to 2.0
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0.1 to 0.5
Silicon (Si), % 0.4 to 0.8
0
Tin (Sn), % 0
1.2 to 2.0
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.1
28.1 to 34.6
Residuals, % 0
0 to 0.4