MakeItFrom.com
Menu (ESC)

8011A Aluminum vs. N12160 Nickel

8011A aluminum belongs to the aluminum alloys classification, while N12160 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8011A aluminum and the bottom bar is N12160 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 1.7 to 28
45
Fatigue Strength, MPa 33 to 76
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 100 to 180
710
Tensile Strength: Yield (Proof), MPa 34 to 170
270

Thermal Properties

Latent Heat of Fusion, J/g 400
360
Maximum Temperature: Mechanical, °C 170
1060
Melting Completion (Liquidus), °C 650
1330
Melting Onset (Solidus), °C 630
1280
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 210
11
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
90
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.2
8.5
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1180
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.0 to 22
260
Resilience: Unit (Modulus of Resilience), kJ/m3 8.2 to 200
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 11 to 18
24
Strength to Weight: Bending, points 18 to 26
22
Thermal Diffusivity, mm2/s 86
2.8
Thermal Shock Resistance, points 4.6 to 8.1
19

Alloy Composition

Aluminum (Al), % 97.5 to 99.1
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
26 to 30
Cobalt (Co), % 0
27 to 33
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0.5 to 1.0
0 to 3.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
25 to 44.4
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.4 to 0.8
2.4 to 3.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.050
0.2 to 0.8
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0