MakeItFrom.com
Menu (ESC)

8011A Aluminum vs. S20161 Stainless Steel

8011A aluminum belongs to the aluminum alloys classification, while S20161 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8011A aluminum and the bottom bar is S20161 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 25 to 50
250
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 1.7 to 28
46
Fatigue Strength, MPa 33 to 76
360
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 100 to 180
980
Tensile Strength: Yield (Proof), MPa 34 to 170
390

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 650
1380
Melting Onset (Solidus), °C 630
1330
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 210
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
12
Density, g/cm3 2.7
7.5
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1180
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.0 to 22
360
Resilience: Unit (Modulus of Resilience), kJ/m3 8.2 to 200
390
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
26
Strength to Weight: Axial, points 11 to 18
36
Strength to Weight: Bending, points 18 to 26
29
Thermal Diffusivity, mm2/s 86
4.0
Thermal Shock Resistance, points 4.6 to 8.1
22

Alloy Composition

Aluminum (Al), % 97.5 to 99.1
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
15 to 18
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0.5 to 1.0
65.6 to 73.9
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
4.0 to 6.0
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
3.0 to 4.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0