MakeItFrom.com
Menu (ESC)

8021 Aluminum vs. 6012 Aluminum

Both 8021 aluminum and 6012 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 8021 aluminum and the bottom bar is 6012 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
69
Elongation at Break, % 2.3
9.1 to 11
Fatigue Strength, MPa 61
55 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 160
220 to 320
Tensile Strength: Yield (Proof), MPa 130
110 to 260

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 640
570
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 220
160
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
45
Electrical Conductivity: Equal Weight (Specific), % IACS 180
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 2.8
2.9
Embodied Carbon, kg CO2/kg material 8.1
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.4
21 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 130
94 to 480
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
48
Strength to Weight: Axial, points 16
22 to 32
Strength to Weight: Bending, points 23
29 to 37
Thermal Diffusivity, mm2/s 88
62
Thermal Shock Resistance, points 7.0
10 to 14

Alloy Composition

Aluminum (Al), % 98 to 98.8
92.2 to 98
Bismuth (Bi), % 0
0 to 0.7
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.050
0 to 0.1
Iron (Fe), % 1.2 to 1.7
0 to 0.5
Lead (Pb), % 0
0.4 to 2.0
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0
0.4 to 1.0
Silicon (Si), % 0 to 0.15
0.6 to 1.4
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15