MakeItFrom.com
Menu (ESC)

8021 Aluminum vs. AISI 310MoLN Stainless Steel

8021 aluminum belongs to the aluminum alloys classification, while AISI 310MoLN stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8021 aluminum and the bottom bar is AISI 310MoLN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.3
28
Fatigue Strength, MPa 61
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 160
610
Tensile Strength: Yield (Proof), MPa 130
290

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 640
1380
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 220
14
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
28
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.1
5.0
Embodied Energy, MJ/kg 150
70
Embodied Water, L/kg 1180
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.4
140
Resilience: Unit (Modulus of Resilience), kJ/m3 130
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 16
21
Strength to Weight: Bending, points 23
20
Thermal Diffusivity, mm2/s 88
3.7
Thermal Shock Resistance, points 7.0
14

Alloy Composition

Aluminum (Al), % 98 to 98.8
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 1.2 to 1.7
45.2 to 53.8
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
1.6 to 2.6
Nickel (Ni), % 0
20.5 to 23.5
Nitrogen (N), % 0
0.090 to 0.15
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Residuals, % 0 to 0.15
0