MakeItFrom.com
Menu (ESC)

8021 Aluminum vs. N08320 Stainless Steel

8021 aluminum belongs to the aluminum alloys classification, while N08320 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8021 aluminum and the bottom bar is N08320 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.3
40
Fatigue Strength, MPa 61
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 160
580
Tensile Strength: Yield (Proof), MPa 130
220

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1400
Melting Onset (Solidus), °C 640
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 220
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
28
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 8.1
4.9
Embodied Energy, MJ/kg 150
69
Embodied Water, L/kg 1180
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.4
180
Resilience: Unit (Modulus of Resilience), kJ/m3 130
120
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 16
20
Strength to Weight: Bending, points 23
20
Thermal Diffusivity, mm2/s 88
3.3
Thermal Shock Resistance, points 7.0
13

Alloy Composition

Aluminum (Al), % 98 to 98.8
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
21 to 23
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 1.2 to 1.7
40.4 to 50
Manganese (Mn), % 0
0 to 2.5
Nickel (Ni), % 0
25 to 27
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.15
0