MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. 295.0 Aluminum

Both 8090 aluminum and 295.0 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is 295.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
71
Elongation at Break, % 3.5 to 13
2.0 to 7.2
Fatigue Strength, MPa 91 to 140
44 to 55
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Tensile Strength: Ultimate (UTS), MPa 340 to 490
230 to 280
Tensile Strength: Yield (Proof), MPa 210 to 420
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 660
640
Melting Onset (Solidus), °C 600
530
Specific Heat Capacity, J/kg-K 960
880
Thermal Conductivity, W/m-K 95 to 160
140
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
35
Electrical Conductivity: Equal Weight (Specific), % IACS 66
100

Otherwise Unclassified Properties

Base Metal Price, % relative 18
10
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.6
7.9
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 1160
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
5.2 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
77 to 340
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 34 to 49
21 to 26
Strength to Weight: Bending, points 39 to 50
27 to 32
Thermal Diffusivity, mm2/s 36 to 60
54
Thermal Shock Resistance, points 15 to 22
9.8 to 12

Alloy Composition

Aluminum (Al), % 93 to 98.4
91.4 to 95.3
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 1.0 to 1.6
4.0 to 5.0
Iron (Fe), % 0 to 0.3
0 to 1.0
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0 to 0.030
Manganese (Mn), % 0 to 0.1
0 to 0.35
Silicon (Si), % 0 to 0.2
0.7 to 1.5
Titanium (Ti), % 0 to 0.1
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 0.35
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0
0 to 0.15