MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. 364.0 Aluminum

Both 8090 aluminum and 364.0 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is 364.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
72
Elongation at Break, % 3.5 to 13
7.5
Fatigue Strength, MPa 91 to 140
120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Tensile Strength: Ultimate (UTS), MPa 340 to 490
300
Tensile Strength: Yield (Proof), MPa 210 to 420
160

Thermal Properties

Latent Heat of Fusion, J/g 400
520
Maximum Temperature: Mechanical, °C 190
190
Melting Completion (Liquidus), °C 660
600
Melting Onset (Solidus), °C 600
560
Specific Heat Capacity, J/kg-K 960
900
Thermal Conductivity, W/m-K 95 to 160
120
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
30
Electrical Conductivity: Equal Weight (Specific), % IACS 66
100

Otherwise Unclassified Properties

Base Metal Price, % relative 18
11
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.6
8.0
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 1160
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
19
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
53
Strength to Weight: Axial, points 34 to 49
31
Strength to Weight: Bending, points 39 to 50
38
Thermal Diffusivity, mm2/s 36 to 60
51
Thermal Shock Resistance, points 15 to 22
14

Alloy Composition

Aluminum (Al), % 93 to 98.4
87.2 to 92
Beryllium (Be), % 0
0.020 to 0.040
Chromium (Cr), % 0 to 0.1
0.25 to 0.5
Copper (Cu), % 1.0 to 1.6
0 to 0.2
Iron (Fe), % 0 to 0.3
0 to 1.5
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0.2 to 0.4
Manganese (Mn), % 0 to 0.1
0 to 0.1
Nickel (Ni), % 0
0 to 0.15
Silicon (Si), % 0 to 0.2
7.5 to 9.5
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 0.15
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0
0 to 0.15