MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. 4032 Aluminum

Both 8090 aluminum and 4032 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is 4032 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
73
Elongation at Break, % 3.5 to 13
6.7
Fatigue Strength, MPa 91 to 140
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
28
Tensile Strength: Ultimate (UTS), MPa 340 to 490
390
Tensile Strength: Yield (Proof), MPa 210 to 420
320

Thermal Properties

Latent Heat of Fusion, J/g 400
570
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 660
570
Melting Onset (Solidus), °C 600
530
Specific Heat Capacity, J/kg-K 960
900
Thermal Conductivity, W/m-K 95 to 160
140
Thermal Expansion, µm/m-K 24
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
34
Electrical Conductivity: Equal Weight (Specific), % IACS 66
120

Otherwise Unclassified Properties

Base Metal Price, % relative 18
10
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.6
7.8
Embodied Energy, MJ/kg 170
140
Embodied Water, L/kg 1160
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
25
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
700
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
53
Strength to Weight: Axial, points 34 to 49
41
Strength to Weight: Bending, points 39 to 50
45
Thermal Diffusivity, mm2/s 36 to 60
59
Thermal Shock Resistance, points 15 to 22
20

Alloy Composition

Aluminum (Al), % 93 to 98.4
81.1 to 87.2
Chromium (Cr), % 0 to 0.1
0 to 0.1
Copper (Cu), % 1.0 to 1.6
0.5 to 1.3
Iron (Fe), % 0 to 0.3
0 to 1.0
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0.8 to 1.3
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0.5 to 1.3
Silicon (Si), % 0 to 0.2
11 to 13.5
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 0.25
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0
0 to 0.15