MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. 5083 Aluminum

Both 8090 aluminum and 5083 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is 5083 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
68
Elongation at Break, % 3.5 to 13
1.1 to 17
Fatigue Strength, MPa 91 to 140
93 to 190
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Tensile Strength: Ultimate (UTS), MPa 340 to 490
290 to 390
Tensile Strength: Yield (Proof), MPa 210 to 420
110 to 340

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 190
190
Melting Completion (Liquidus), °C 660
640
Melting Onset (Solidus), °C 600
580
Specific Heat Capacity, J/kg-K 960
900
Thermal Conductivity, W/m-K 95 to 160
120
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
29
Electrical Conductivity: Equal Weight (Specific), % IACS 66
96

Otherwise Unclassified Properties

Base Metal Price, % relative 18
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.6
8.9
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 1160
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
4.2 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
95 to 860
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 34 to 49
29 to 40
Strength to Weight: Bending, points 39 to 50
36 to 44
Thermal Diffusivity, mm2/s 36 to 60
48
Thermal Shock Resistance, points 15 to 22
12 to 17

Alloy Composition

Aluminum (Al), % 93 to 98.4
92.4 to 95.6
Chromium (Cr), % 0 to 0.1
0.050 to 0.25
Copper (Cu), % 1.0 to 1.6
0 to 0.1
Iron (Fe), % 0 to 0.3
0 to 0.4
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
4.0 to 4.9
Manganese (Mn), % 0 to 0.1
0.4 to 1.0
Silicon (Si), % 0 to 0.2
0 to 0.4
Titanium (Ti), % 0 to 0.1
0 to 0.15
Zinc (Zn), % 0 to 0.25
0 to 0.25
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0
0 to 0.15