MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. AM60B Magnesium

8090 aluminum belongs to the aluminum alloys classification, while AM60B magnesium belongs to the magnesium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is AM60B magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
45
Elongation at Break, % 3.5 to 13
11
Fatigue Strength, MPa 91 to 140
96
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
17
Tensile Strength: Ultimate (UTS), MPa 340 to 490
230
Tensile Strength: Yield (Proof), MPa 210 to 420
130

Thermal Properties

Latent Heat of Fusion, J/g 400
350
Maximum Temperature: Mechanical, °C 190
120
Melting Completion (Liquidus), °C 660
620
Melting Onset (Solidus), °C 600
540
Specific Heat Capacity, J/kg-K 960
1000
Thermal Conductivity, W/m-K 95 to 160
61
Thermal Expansion, µm/m-K 24
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
13
Electrical Conductivity: Equal Weight (Specific), % IACS 66
72

Otherwise Unclassified Properties

Base Metal Price, % relative 18
12
Density, g/cm3 2.7
1.7
Embodied Carbon, kg CO2/kg material 8.6
23
Embodied Energy, MJ/kg 170
160
Embodied Water, L/kg 1160
990

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
21
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
190
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
71
Strength to Weight: Axial, points 34 to 49
38
Strength to Weight: Bending, points 39 to 50
50
Thermal Diffusivity, mm2/s 36 to 60
37
Thermal Shock Resistance, points 15 to 22
14

Alloy Composition

Aluminum (Al), % 93 to 98.4
5.5 to 6.5
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 1.0 to 1.6
0 to 0.010
Iron (Fe), % 0 to 0.3
0 to 0.0050
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
92.6 to 94.3
Manganese (Mn), % 0 to 0.1
0.24 to 0.6
Nickel (Ni), % 0
0 to 0.0020
Silicon (Si), % 0 to 0.2
0 to 0.1
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 0.22
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0