MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. ASTM Grade HL Steel

8090 aluminum belongs to the aluminum alloys classification, while ASTM grade HL steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is ASTM grade HL steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 3.5 to 13
11
Fatigue Strength, MPa 91 to 140
150
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 25
80
Tensile Strength: Ultimate (UTS), MPa 340 to 490
500
Tensile Strength: Yield (Proof), MPa 210 to 420
270

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 660
1390
Melting Onset (Solidus), °C 600
1340
Specific Heat Capacity, J/kg-K 960
490
Thermal Expansion, µm/m-K 24
17

Otherwise Unclassified Properties

Base Metal Price, % relative 18
27
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.6
4.5
Embodied Energy, MJ/kg 170
65
Embodied Water, L/kg 1160
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
48
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 34 to 49
18
Strength to Weight: Bending, points 39 to 50
18
Thermal Shock Resistance, points 15 to 22
11

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0.2 to 0.6
Chromium (Cr), % 0 to 0.1
28 to 32
Copper (Cu), % 1.0 to 1.6
0
Iron (Fe), % 0 to 0.3
40.8 to 53.8
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
18 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0