MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. AWS E385

8090 aluminum belongs to the aluminum alloys classification, while AWS E385 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is AWS E385.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 3.5 to 13
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
79
Tensile Strength: Ultimate (UTS), MPa 340 to 490
580

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Melting Completion (Liquidus), °C 660
1440
Melting Onset (Solidus), °C 600
1390
Specific Heat Capacity, J/kg-K 960
460
Thermal Conductivity, W/m-K 95 to 160
14
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 66
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 18
31
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.6
5.8
Embodied Energy, MJ/kg 170
79
Embodied Water, L/kg 1160
200

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 34 to 49
20
Strength to Weight: Bending, points 39 to 50
19
Thermal Diffusivity, mm2/s 36 to 60
3.6
Thermal Shock Resistance, points 15 to 22
15

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
19.5 to 21.5
Copper (Cu), % 1.0 to 1.6
1.2 to 2.0
Iron (Fe), % 0 to 0.3
41.8 to 50.1
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
1.0 to 2.5
Molybdenum (Mo), % 0
4.2 to 5.2
Nickel (Ni), % 0
24 to 26
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 0.9
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0