MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. AWS E409Nb

8090 aluminum belongs to the aluminum alloys classification, while AWS E409Nb belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is AWS E409Nb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 3.5 to 13
23
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
76
Tensile Strength: Ultimate (UTS), MPa 340 to 490
500
Tensile Strength: Yield (Proof), MPa 210 to 420
380

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 600
1410
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 95 to 160
25
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 66
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 18
13
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.6
2.9
Embodied Energy, MJ/kg 170
42
Embodied Water, L/kg 1160
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
110
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
380
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 34 to 49
18
Strength to Weight: Bending, points 39 to 50
18
Thermal Diffusivity, mm2/s 36 to 60
6.8
Thermal Shock Resistance, points 15 to 22
14

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.1
11 to 14
Copper (Cu), % 1.0 to 1.6
0 to 0.75
Iron (Fe), % 0 to 0.3
80.2 to 88.5
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
0 to 0.6
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0