MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. AZ91C Magnesium

8090 aluminum belongs to the aluminum alloys classification, while AZ91C magnesium belongs to the magnesium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is AZ91C magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
46
Elongation at Break, % 3.5 to 13
2.3 to 7.9
Fatigue Strength, MPa 91 to 140
56 to 85
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
18
Tensile Strength: Ultimate (UTS), MPa 340 to 490
170 to 270
Tensile Strength: Yield (Proof), MPa 210 to 420
83 to 130

Thermal Properties

Latent Heat of Fusion, J/g 400
350
Maximum Temperature: Mechanical, °C 190
130
Melting Completion (Liquidus), °C 660
600
Melting Onset (Solidus), °C 600
470
Specific Heat Capacity, J/kg-K 960
990
Thermal Conductivity, W/m-K 95 to 160
73
Thermal Expansion, µm/m-K 24
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
9.9 to 12
Electrical Conductivity: Equal Weight (Specific), % IACS 66
52 to 60

Otherwise Unclassified Properties

Base Metal Price, % relative 18
12
Density, g/cm3 2.7
1.7
Embodied Carbon, kg CO2/kg material 8.6
22
Embodied Energy, MJ/kg 170
160
Embodied Water, L/kg 1160
990

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
3.2 to 16
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
75 to 180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
69
Strength to Weight: Axial, points 34 to 49
27 to 43
Strength to Weight: Bending, points 39 to 50
39 to 53
Thermal Diffusivity, mm2/s 36 to 60
43
Thermal Shock Resistance, points 15 to 22
9.9 to 16

Alloy Composition

Aluminum (Al), % 93 to 98.4
8.1 to 9.3
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 1.0 to 1.6
0 to 0.1
Iron (Fe), % 0 to 0.3
0
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
88.6 to 91.4
Manganese (Mn), % 0 to 0.1
0.13 to 0.35
Nickel (Ni), % 0
0 to 0.010
Silicon (Si), % 0 to 0.2
0 to 0.3
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0.4 to 1.0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0
0 to 0.3