MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. EN 1.0038 Steel

8090 aluminum belongs to the aluminum alloys classification, while EN 1.0038 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is EN 1.0038 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 3.5 to 13
23 to 25
Fatigue Strength, MPa 91 to 140
140 to 160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Tensile Strength: Ultimate (UTS), MPa 340 to 490
380 to 430
Tensile Strength: Yield (Proof), MPa 210 to 420
200 to 220

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 95 to 160
49
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 66
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 18
2.1
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.6
1.4
Embodied Energy, MJ/kg 170
19
Embodied Water, L/kg 1160
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
72 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
110 to 130
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 34 to 49
13 to 15
Strength to Weight: Bending, points 39 to 50
15 to 16
Thermal Diffusivity, mm2/s 36 to 60
13
Thermal Shock Resistance, points 15 to 22
12 to 13

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0 to 0.23
Chromium (Cr), % 0 to 0.1
0 to 0.3
Copper (Cu), % 1.0 to 1.6
0 to 0.6
Iron (Fe), % 0 to 0.3
97.1 to 100
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Nitrogen (N), % 0
0 to 0.014
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.2
0 to 0.55
Sulfur (S), % 0
0 to 0.045
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0