MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. EN 1.0213 Steel

8090 aluminum belongs to the aluminum alloys classification, while EN 1.0213 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is EN 1.0213 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 3.5 to 13
12 to 25
Fatigue Strength, MPa 91 to 140
160 to 240
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Tensile Strength: Ultimate (UTS), MPa 340 to 490
320 to 430
Tensile Strength: Yield (Proof), MPa 210 to 420
220 to 330

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 660
1470
Melting Onset (Solidus), °C 600
1430
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 95 to 160
53
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 66
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 18
1.8
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.6
1.4
Embodied Energy, MJ/kg 170
18
Embodied Water, L/kg 1160
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
33 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
120 to 300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 34 to 49
11 to 15
Strength to Weight: Bending, points 39 to 50
13 to 16
Thermal Diffusivity, mm2/s 36 to 60
14
Thermal Shock Resistance, points 15 to 22
10 to 14

Alloy Composition

Aluminum (Al), % 93 to 98.4
0.020 to 0.060
Carbon (C), % 0
0.060 to 0.1
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 1.0 to 1.6
0
Iron (Fe), % 0 to 0.3
99.245 to 99.67
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0.25 to 0.45
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0