MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. EN 1.4310 Stainless Steel

8090 aluminum belongs to the aluminum alloys classification, while EN 1.4310 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is EN 1.4310 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 3.5 to 13
14 to 45
Fatigue Strength, MPa 91 to 140
240 to 330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Tensile Strength: Ultimate (UTS), MPa 340 to 490
730 to 900
Tensile Strength: Yield (Proof), MPa 210 to 420
260 to 570

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 190
910
Melting Completion (Liquidus), °C 660
1420
Melting Onset (Solidus), °C 600
1380
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 95 to 160
15
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 66
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 18
14
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.6
2.9
Embodied Energy, MJ/kg 170
42
Embodied Water, L/kg 1160
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
110 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
170 to 830
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 34 to 49
26 to 32
Strength to Weight: Bending, points 39 to 50
23 to 27
Thermal Diffusivity, mm2/s 36 to 60
4.0
Thermal Shock Resistance, points 15 to 22
15 to 18

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.1
16 to 19
Copper (Cu), % 1.0 to 1.6
0
Iron (Fe), % 0 to 0.3
66.4 to 78
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0
6.0 to 9.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.2
0 to 2.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0