MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. EN 1.7106 Steel

8090 aluminum belongs to the aluminum alloys classification, while EN 1.7106 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is EN 1.7106 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
72
Tensile Strength: Ultimate (UTS), MPa 340 to 490
660 to 2020

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 190
410
Melting Completion (Liquidus), °C 660
1430
Melting Onset (Solidus), °C 600
1390
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 95 to 160
46
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 66
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 18
2.1
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.6
1.5
Embodied Energy, MJ/kg 170
20
Embodied Water, L/kg 1160
47

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 34 to 49
24 to 73
Strength to Weight: Bending, points 39 to 50
22 to 46
Thermal Diffusivity, mm2/s 36 to 60
13
Thermal Shock Resistance, points 15 to 22
20 to 61

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0.52 to 0.6
Chromium (Cr), % 0 to 0.1
0.2 to 0.45
Copper (Cu), % 1.0 to 1.6
0
Iron (Fe), % 0 to 0.3
95.9 to 97
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0.7 to 1.0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
1.6 to 2.0
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0