MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. EN 1.7729 Steel

8090 aluminum belongs to the aluminum alloys classification, while EN 1.7729 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is EN 1.7729 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 3.5 to 13
17
Fatigue Strength, MPa 91 to 140
500
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Tensile Strength: Ultimate (UTS), MPa 340 to 490
910
Tensile Strength: Yield (Proof), MPa 210 to 420
750

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
430
Melting Completion (Liquidus), °C 660
1470
Melting Onset (Solidus), °C 600
1430
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 95 to 160
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 66
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 18
3.8
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.6
3.3
Embodied Energy, MJ/kg 170
49
Embodied Water, L/kg 1160
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
150
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
1500
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 34 to 49
32
Strength to Weight: Bending, points 39 to 50
27
Thermal Diffusivity, mm2/s 36 to 60
11
Thermal Shock Resistance, points 15 to 22
27

Alloy Composition

Aluminum (Al), % 93 to 98.4
0.015 to 0.080
Arsenic (As), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0 to 0.1
0.9 to 1.2
Copper (Cu), % 1.0 to 1.6
0 to 0.2
Iron (Fe), % 0 to 0.3
94.8 to 97
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0.35 to 0.75
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0.070 to 0.15
Vanadium (V), % 0
0.6 to 0.8
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0