MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. EN 2.4680 Cast Nickel

8090 aluminum belongs to the aluminum alloys classification, while EN 2.4680 cast nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is EN 2.4680 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
210
Elongation at Break, % 3.5 to 13
9.1
Fatigue Strength, MPa 91 to 140
120
Poisson's Ratio 0.33
0.26
Shear Modulus, GPa 25
84
Tensile Strength: Ultimate (UTS), MPa 340 to 490
600
Tensile Strength: Yield (Proof), MPa 210 to 420
260

Thermal Properties

Latent Heat of Fusion, J/g 400
350
Maximum Temperature: Mechanical, °C 190
1050
Melting Completion (Liquidus), °C 660
1360
Melting Onset (Solidus), °C 600
1320
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 95 to 160
14
Thermal Expansion, µm/m-K 24
15

Otherwise Unclassified Properties

Base Metal Price, % relative 18
60
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.6
9.1
Embodied Energy, MJ/kg 170
130
Embodied Water, L/kg 1160
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
45
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
160
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 34 to 49
21
Strength to Weight: Bending, points 39 to 50
20
Thermal Diffusivity, mm2/s 36 to 60
3.7
Thermal Shock Resistance, points 15 to 22
14

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
48 to 52
Copper (Cu), % 1.0 to 1.6
0
Iron (Fe), % 0 to 0.3
0 to 1.0
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
42.9 to 51
Niobium (Nb), % 0
1.0 to 1.8
Nitrogen (N), % 0
0 to 0.16
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0