MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. EN 2.4879 Cast Nickel

8090 aluminum belongs to the aluminum alloys classification, while EN 2.4879 cast nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is EN 2.4879 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 3.5 to 13
3.4
Fatigue Strength, MPa 91 to 140
110
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
80
Tensile Strength: Ultimate (UTS), MPa 340 to 490
490
Tensile Strength: Yield (Proof), MPa 210 to 420
270

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 190
1150
Melting Completion (Liquidus), °C 660
1450
Melting Onset (Solidus), °C 600
1400
Specific Heat Capacity, J/kg-K 960
460
Thermal Conductivity, W/m-K 95 to 160
11
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 18
55
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.6
8.3
Embodied Energy, MJ/kg 170
120
Embodied Water, L/kg 1160
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
14
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 34 to 49
16
Strength to Weight: Bending, points 39 to 50
16
Thermal Diffusivity, mm2/s 36 to 60
2.8
Thermal Shock Resistance, points 15 to 22
13

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0.35 to 0.55
Chromium (Cr), % 0 to 0.1
27 to 30
Copper (Cu), % 1.0 to 1.6
0
Iron (Fe), % 0 to 0.3
9.4 to 20.7
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
47 to 50
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
4.0 to 6.0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0