MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. EN AC-21000 Aluminum

Both 8090 aluminum and EN AC-21000 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is EN AC-21000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
71
Elongation at Break, % 3.5 to 13
6.7
Fatigue Strength, MPa 91 to 140
100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Tensile Strength: Ultimate (UTS), MPa 340 to 490
340
Tensile Strength: Yield (Proof), MPa 210 to 420
240

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 660
670
Melting Onset (Solidus), °C 600
550
Specific Heat Capacity, J/kg-K 960
880
Thermal Conductivity, W/m-K 95 to 160
130
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
34
Electrical Conductivity: Equal Weight (Specific), % IACS 66
100

Otherwise Unclassified Properties

Base Metal Price, % relative 18
11
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.6
8.0
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 1160
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
21
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 34 to 49
32
Strength to Weight: Bending, points 39 to 50
36
Thermal Diffusivity, mm2/s 36 to 60
49
Thermal Shock Resistance, points 15 to 22
15

Alloy Composition

Aluminum (Al), % 93 to 98.4
93.4 to 95.5
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 1.0 to 1.6
4.2 to 5.0
Iron (Fe), % 0 to 0.3
0 to 0.35
Lead (Pb), % 0
0 to 0.050
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0.15 to 0.35
Manganese (Mn), % 0 to 0.1
0 to 0.1
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0 to 0.2
0 to 0.2
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0.15 to 0.3
Zinc (Zn), % 0 to 0.25
0 to 0.1
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0
0 to 0.1