MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. EN AC-46100 Aluminum

Both 8090 aluminum and EN AC-46100 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is EN AC-46100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
73
Elongation at Break, % 3.5 to 13
1.0
Fatigue Strength, MPa 91 to 140
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
28
Tensile Strength: Ultimate (UTS), MPa 340 to 490
270
Tensile Strength: Yield (Proof), MPa 210 to 420
160

Thermal Properties

Latent Heat of Fusion, J/g 400
550
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 660
600
Melting Onset (Solidus), °C 600
540
Specific Heat Capacity, J/kg-K 960
890
Thermal Conductivity, W/m-K 95 to 160
110
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
28
Electrical Conductivity: Equal Weight (Specific), % IACS 66
90

Otherwise Unclassified Properties

Base Metal Price, % relative 18
10
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.6
7.6
Embodied Energy, MJ/kg 170
140
Embodied Water, L/kg 1160
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
170
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 34 to 49
27
Strength to Weight: Bending, points 39 to 50
34
Thermal Diffusivity, mm2/s 36 to 60
44
Thermal Shock Resistance, points 15 to 22
12

Alloy Composition

Aluminum (Al), % 93 to 98.4
80.4 to 88.5
Chromium (Cr), % 0 to 0.1
0 to 0.15
Copper (Cu), % 1.0 to 1.6
1.5 to 2.5
Iron (Fe), % 0 to 0.3
0 to 1.1
Lead (Pb), % 0
0 to 0.25
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0 to 0.3
Manganese (Mn), % 0 to 0.1
0 to 0.55
Nickel (Ni), % 0
0 to 0.45
Silicon (Si), % 0 to 0.2
10 to 12
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.1
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 1.7
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0
0 to 0.25